MathsTips.com

Maths Help, Free Tutorials And Useful Mathematics Resources

  • Home
  • Algebra
    • Matrices
  • Geometry
  • Trigonometry
  • Calculus
  • Business Maths
  • Arithmetic
  • Statistics
Home » Algebra » Understanding Simple Algebraic Formulas With Examples

Understanding Simple Algebraic Formulas With Examples

Definition:

Any general result expressed in symbols is called formula. In other words, a formula is the most general expression for any theorem respecting quantities.

Formula:

(a+b)^2 = (a+b)(a+b) =a(a+b)+b(a+b) =a^2+2ab+b^2

That is, the square of any two quantities is equal to the sum of their squares plus twice their product.

Corrollary: a^2+b^2= (a^2+2ab+b^2)-2ab=(a+b)^2-2ab

Example: Find the square of 2x+3y

= (2x+3y)^2

= (2x)^2+2(2x)(3y)+(3y)^2

= 4x^2+12xy+9y^2

Example: Simplify: (\dfrac{x}{y}+\dfrac{y}{x})^2

= (\dfrac{x}{y})^2+2\dfrac{x}{y}\dfrac{y}{x}+(\dfrac{y}{x})^2

=\dfrac{x^2}{y^2}+2+\dfrac{y^2}{x^2}

Example: Find the square of 8012.

= (8012)^2

= (8000+12)^2

= (8000)^2+2(8000)(12)+(12)^2

=64000000+192000+144

=64192144

Example: Find the value of a^4+\dfrac{1}{a^4} when a +\dfrac{1}{a}=4

a^2+\dfrac{1}{a^2}=(a+\dfrac{1}{a})^2-2.a.\dfrac{1}{a}=4^2-2=14

a^4+\dfrac{1}{a^4}=(a^2+\dfrac{1}{a^2})^2-2.a^2.\dfrac{1}{a^2}=14^2-2=196-2=194

Example: Express 16x^2+40xy+25y^2 as a perfect square.

16x^2+40xy+25y^2=(4x)^2+2.4x.5y+(5y)^2

=(4x+5y)^2

Exercise:

1. Find the square of the following:

i) 3x^2+2y^2

ii) (\dfrac{1}{a} +\dfrac{1}{b})

2. Express each of the following expressions as a perfect square:

i) x^2+2+\dfrac{1}{x^2}

ii) 25x^2+5xy+\dfrac{y^2}{4}

3. Simplify:

i) (x+y)^2+2(x+y)(x-y)+(x-y)^2

ii) (5a-7b)^2+(9b-4a)^2 +2(5a-7b)(9b-4a)

4. If x+\dfrac{1}{x}=a , find the value of x^2+\dfrac{1}{x^2}

5.If x+\dfrac{1}{x}=\sqrt{2} show that, x^2+\dfrac{1}{x^2}=0 and x^4+\dfrac{1}{x^4}

Formula:

(a-b)^2= a-b)(a-b)=a(a-b)-b(a-b)= a^2-2ab+b^2

That is, the square of the difference of any two quantities is equal to the sum of their squares minus twice their product.

Corollary 1: a^2+b^2=(a^2-2ab+b^2)+2ab=(a-b)^2+2ab

Corollary 2: \because a^2+b^2= (a^2+2ab+b^2)-2ab=(a+b)^2-2ab , and a^2+b^2=(a^2-2ab+b^2)+2ab=(a-b)^2+2ab ,

\therefore (a-b)^2=(a+b)^2-4ab

and (a+b)^2=(a-b)^2+4ab

Example: Find the square of 3a-4b

(3a-4b)^2

= (3a)^2-2(3a)(4b)+(4b)^2

=9a^2-24ab+16b^2

Example: Find the square of 2x-3y-4z

(2x-3y-4z)^2=[2x-(3y+4z)]^2=(2x)^2-2(2x)(3y+4z)+(3y+4z)^2

=4x^2-2(6xy+8xz)+[(3y)^2+2(3y)(4z)+(4z)^2]

=4x^2-12xy-16xz+9y^2+24yz+16z^2

=4x^2+9y^2+16z^2-12xy-16xz+24yz

Example: Find the value of (i) (x+\dfrac{1}{x})^2, (ii) x^2+\dfrac{1}{x^2} \: and \: (iii) x^4+\dfrac{1}{x^4} , when x-\dfrac{1}{x}=2

i.            (x+\dfrac{1}{x})^2=(x-\dfrac{1}{x})^2+4.x.\dfrac{1}{x}=2^2+4=8

ii.            x^2+\dfrac{1}{x^2}=(x=\dfrac{1}{x})^2+2.x.\dfrac{1}{x}=2^2+2=6

iii.            x^4+\dfrac{1}{x^4}=(x^2+\dfrac{1}{x^2})^2-2.x^2.\dfrac{1}{x^2}=662-2=34

Exercise:

1. Find the square of the following:

i) \dfrac{2x}{y}-\dfrac{y}{2x}

ii) 993

[Hint: Write 993 as (1000-7)]

2. Express each of the following expressions as a perfect square:

i) \dfrac{1}{a^2}+\dfrac{1}{4b^2}+\dfrac{1}{ab}

ii) 4x^2-2+\dfrac{1}{4x^2}

3. Simplify:

i) (ax-by+cz)^2+(ax-by-cz)^2-2(ax-by+cz)(ax-by-cz)

[Hint: Put (ax-by+cz)=m and (ax-by-cz)=n ]

ii) (a+3b)-2(a+3b)(a-3b)+(a-3b)^2

4. If c-\dfrac{1}{c}=4 , show that c^2+(\dfrac{1}{c})^2=18

5.  If x-\dfrac{1}{x}=3 , show that

i) (x+\dfrac{1}{x})^2=13

ii) x^2+\dfrac{1}{x^2}=11

ii) x^4+\dfrac{1}{x^4}=119

Formula:

(a+b)(a-b)=a(a-b)+b(a-b)=a^2-b^2

That is, the product of the sum and the difference of any two quantities is equal to the difference of their squares.

Conversely, a^2-b^2=(a+b)(a-b) . Hence, we can always find the factors of an expression which is of the form a^2-b^2

Note: When one expression is the product of two or more expressions, each of the latter is called a factor of the former.

Example: Multiply 3x+5y by 3x-5y

(3x+5y)(3x-5y)=(3x)^2-(5y)^2=9x^2+25y^2

Example: Multiply x^2+xy+y^2 by x^2-xy+y^2

$latex (x^2+xy+y^2)( x^2-xy+y^2)=[(x^2+y^2)+xy][ (x^2+y^2)-xy]

=(x^2+y^2)^2-(xy)^2=x^4+2x^2y^2+y^2-x^2y^2=x^4+x^2y^2+y^4

Example: Simplify: (a^2+ab+b^2)^2-(a^2-ab+b^2)^2

(a^2+ab+b^2)^2-(a^2-ab+b^2)^2=[(a^2+ab+b^2)+(a^2-ab+b^2)] \times [(a^2+ab+b^2)-(a^2-ab+b^2)]

=(2a62+2b^2) \times 2ab

=2(a^2+b^2) \times 2ab

=4ab(a^2+b^2)

Example: Resolve into factors 16a^4-81x^4

16a^4-81x^4=(4a^2)^2-(9x^2)^2=(4a^2+9x^2)(4a^2-9x^2)

Again, 4a^2-9x^2=(2a)^2-(3x)^2=(2a+3x)(2a-3x)

Hence, the given expression becomes (4a^2+9x^2)(2a+3x)(2a-3x)

Exercise:

1. Multiply together:

i) x+3 and x-3

ii) 208 and 192

[Hint: Take 200=(200+8) and 192=(200-8)]

iii) a+b+c and a+b-c

iv) -ax+by+cz and ax+by+cz

2. Simplify:

i) (a+b-c)^2-(a-b+c)^2

ii)(x^2+xy+y^2)^2-(x^2-xy+y^2)^2

Resolve into factors:

i) 144c^2-25d^2

ii) (a+2b)^2-25c^2

iii) (4a+7b)^2-(3a-8b)^2

iv) \dfrac{16}{25}(5x-\dfrac{3}{4y})-\dfrac{36}{49}(\dfrac{7}{12}x+\dfrac{14y}{27})^2

A few more formulae:

  1. (x+y)^2+(x-y)^2=2(x^2+y^2)
  2. (\dfrac{x+y}{2})^2+(\dfrac{x-y}{2})^2=xy
  3. (x+a)(x+b)=x(x+b)+a(x+b)=x^2+(a+b)x+ab

Note: It is easy to notice that the above formula (3) includes the following results:

i.            (x-a)(x-b)= x^2-(a+b)x+ab

ii.            (x-a)(x+b)= x^2+(b-a)x-ab

iii.            (x+a)(x-b)= x^2+(a-b)x-ab

For instance, (x-a)(x-b)=[x+(-a)][x+(-b)]=x^2+[(-a)+(-b)]x+[(-a) \times (-b)]

=x^2-(a+b)x+ab

Similarly, the truth of the other two results can be proved.

Hence we can express the formula more clearly as follows:

(x+a)(x+b)=x+(algebraic \: sum \: of \: a \: and \: b)x+(product \: of \: a \: and \: b)

« Positive and Negative Quantities
Integers »


Filed Under: Algebra Tagged With: Algebra Formula

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Table of Content

  • Complex Numbers
  • Quadratic Equations
  • Logarithm
  • Permutation
  • Combination
  • More on Complex Numbers
  • Classification of Numbers
  • Positive and Negative Quantities
  • Understanding Simple Algebraic Formulas With Examples
  • Integers
  • Linear Inequalities
  • An Introduction to Fundamental Algebra
  • Basic Number Properties – Commutative, Associative and Distributive
  • Algebraic Multiplication and Division
  • Simple Equations in One Variable
  • Simple Formulae and their Application
  • Rational and Irrational Numbers
  • Problems Leading to Simple Equations
  • Simultaneous Equations
  • Mathematical Induction
  • Different Type of Sets
  • Indices
  • Framing Formulas
  • Sequences
  • Introduction to Matrices
  • Addition Of Matrices
  • Subtraction Of Matrix
  • Multiplication of Matrices
  • Determinant of Matrices
  • Co-factor of Matrices
  • Minor of Matrices
  • Transpose and Adjoint of Matrices
  • Inverse of a Matrix
  • System of Linear Equations in Matrices
  • Introduction to Polynomials
  • Classification of Polynomials
  • Addition and Subtraction of Polynomials
  • Multiplication of Polynomials
  • Factoring Polynomials
  • Zeroes of Polynomial
  • Remainder Theorem of Polynomials
  • Factor Theorem of Polynomial
  • Simplifying Polynomial Fractions
  • Roots of a Polynomial
  • Addition of Polynomial Fractions
  • Subtraction of Polynomial Fractions
  • Multiplying polynomial fractions
  • Division of Polynomial Fractions

© MathsTips.com 2013 - 2025. All Rights Reserved.