MathsTips.com

Maths Help, Free Tutorials And Useful Mathematics Resources

  • Home
  • Algebra
    • Matrices
  • Geometry
  • Trigonometry
  • Calculus
  • Business Maths
  • Arithmetic
  • Statistics
Home » QnA » For theta Belonging to 0, 4Pi the linear equations with no solutions

For theta Belonging to 0, 4Pi the linear equations with no solutions

The number of \theta \in (0,4\pi ) for which the system of linear equations

\begin{gathered} 3(\sin 3\theta )x - y + z = 2 \hfill \\ 3(\cos 2\theta )x + 4y + 3z = 3 \hfill \\ 6x + 7y + 7z = 9 \hfill \\ \end{gathered}

has no solution, is

(A) 6
(B) 7
(C) 8
(D) 9

Solution:

Tip for solving this question:

  • By converting linear equations into matrix form, find the determinant of the matrix. Also, check out What is Determinant of Matrix in detail here.
  • Then using properties of linear equations, we find the number for no solutions.

Step 1:

Matrix Form of Linear Equations:

\left[ {\begin{array}{*{20}{c}} {3(\sin 3\theta )}&{ - 1}&1 \\ {3(\cos 2\theta )}&4&3 \\ 6&7&7 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} x \\ y \\ z \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 2 \\ 3 \\ 9 \end{array}} \right]

Now, the determinant of a matrix is

\begin{gathered} \Delta = \left[ {\begin{array}{*{20}{c}} {3(\sin 3\theta )}&{ - 1}&1 \\ {3(\cos 2\theta )}&4&3 \\ 6&7&7 \end{array}} \right] \hfill \\ = 3(\sin 3\theta )(28 - 21) + 1(21\cos 2\theta - 18) + 1(21\cos 2\theta - 24) \hfill \\ = 21\sin 3\theta + 42\cos 2\theta - 42 \hfill \\ \end{gathered}

Step 2:

We have given that system of linear equations has no solution

For no solution, = 0

\begin{gathered} \Rightarrow 21\sin 3\theta + 42\cos 2\theta - 42 = 0 \hfill \\ \Rightarrow 21\sin 3\theta + 42\cos 2\theta = 42 \hfill \\ \Rightarrow 21(\sin 3\theta + 2\cos 2\theta ) = 42 \hfill \\ \Rightarrow \sin 3\theta + 2\cos 2\theta = 2 \hfill \\ \Rightarrow \sin 3\theta = 2(1 - \cos 2\theta ) \hfill \\ \Rightarrow \sin 3\theta = 2 \times 2{\sin ^2}\theta \{ \because 1 - \cos 2\theta = 2{\sin ^2}\theta \} \hfill \\ \Rightarrow 3\sin \theta - 4{\sin ^3}\theta = 4{\sin ^2}\theta \{ \because \sin 3\theta = 3\sin \theta - 4{\sin ^3}\theta \} \hfill \\ \Rightarrow - 4{\sin ^3}\theta - 4{\sin ^2}\theta + 3\sin \theta = 0 \hfill \\ \Rightarrow 4{\sin ^3}\theta + 4{\sin ^2}\theta - 3\sin \theta = 0 \hfill \\ \Rightarrow \sin \theta (4{\sin ^2}\theta + 4\sin \theta - 3) = 0 \hfill \\ \Rightarrow \sin \theta = 0or4{\sin ^2}\theta + 4\sin \theta - 3 = 0 \hfill \\ \Rightarrow \sin \theta = 0or4{\sin ^2}\theta + 4\sin \theta + 1 = 4 \hfill \\ \Rightarrow \sin \theta = 0or{(2\sin \theta + 1)^2} = 4 \hfill \\ \end{gathered}

\text{Now, for } \sin \theta = 0

\theta \in \left\{ {\pi ,2\pi ,3\pi } \right\}\because \theta \in (0,4\pi ) ...... (1)

\begin{gathered}\text{For } {(2\sin \theta + 1)^2} = 4 \hfill \\ 2\sin \theta + 1 = 2\hspace{1mm}\&\hspace{1mm} 2\sin \theta + 1 = - 2 \hfill \\ \sin \theta = \frac{1}{2} \hspace{1mm} \& \hspace{1mm} \sin \theta = \frac{{ - 3}}{2} \hfill \\ \sin \theta = \frac{1}{2} \Rightarrow \theta \in \left\{ {\frac{\pi }{6},\frac{{5\pi }}{6},\frac{{13\pi }}{6},\frac{{17\pi }}{6}} \right\}\because \theta \in (0,4\pi )......(2) \hfill \end{gathered}

and \sin \theta = \frac{{ - 3}}{2}

No solution is there for \theta \in (0,4\pi )

Therefore, from (1) and (2)

\text{For } \theta \in (0,4\pi)\text{ we get }\theta = \pi ,2\pi ,3\pi ,\frac{\pi }{6},\frac{{5\pi }}{6},\frac{{13\pi }}{6},\frac{{17\pi }}{6}

Number of solutions = 7

Final Answer:

Option (B) is correct.

The total number of functions, f: {1, 2, 3, 4} → {1, 2, 3, 4, 5, 6} such that f(1) + f(2) = f(3), is equal to »


Filed Under: QnA

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Table of Content

  • For theta Belonging to 0, 4Pi the linear equations with no solutions
  • The total number of functions, f: {1, 2, 3, 4} → {1, 2, 3, 4, 5, 6} such that f(1) + f(2) = f(3), is equal to
  • α^2021 + β^2021 + γ^2021 + δ^2021 for x^4 + x^3 + x^2 + x + 1 = 0
  • Number of elements where n belongs to N and Sn Intersection Tn is phi
  • Lim n →∞, sqrt(n2-n-1)+nα+β=0 then 8(α+β)
  • Absolute maximum value of the function (x^2 – 2x + 7)e^(4x^3 – 12x^2 – 180x + 31)
  • General Solution of differential equation (x – y^2)dx +y(5x + y^2)dy
  • Line with slope greater than 1 passes A(4, 3) and intersects x–y=2 at B
  • Mean and Variance of a binomial distribution are 24 and 128
  • The slope of the tangent to a curve C: y = y(x) at any point (x, y)

© MathsTips.com 2013 - 2025. All Rights Reserved.