MathsTips.com

Maths Help, Free Tutorials And Useful Mathematics Resources

  • Home
  • Algebra
    • Matrices
  • Geometry
  • Trigonometry
  • Calculus
  • Business Maths
  • Arithmetic
  • Statistics
Home » Algebra » Matrices » Inverse of a Matrix

Inverse of a Matrix

Given a matrix A, if there exists a matrix B such that AB = BA = I, then B is called inverse of A. When we multiply a number by its reciprocal we get 1 and when we multiply a matrix by its inverse we get Identity matrix. Inverse of A is denoted by  A^{-1} . The inverse is used to find the solution to a system of linear equation. Using determinant and adjoint, we can easily find the inverse of a square matrix.

The following results are extremely important:

  1. Only a non-singular matrix can possess inverse i.e. a square matrix A possesses inverse if and only if  determinant |A|   \neq 0.Then A is said to be invertible.
  2. The inverse of a matrix, where exists, is unique i.e. a non-singular matrix A cannot possess different inverse, say B and C. If A is a non-singular matrix, then   A^{-1} = \frac{1}{|A|} adj A

Algorithm to find inverse of a matrix: 

Suppose a square matrix A is given whose inverse is to be obtained.

  1. Find |A|. If |A| = 0, write “Inverse does not exist”. If |A|   \neq 0 write “Inverse exists” and proceed to step 2.
  2. Find cofactor of all elements of A.
  3. Write matrix of the cofactor of A.
  4. Write adj A
  5.  A^{-1} = \frac{1}{|A|} adj A
  6. Whether the inverse is correct verify it by  AA^{-1} = I (Identitiy Matrix).

Suppose a 2*2 matrix A whose determinant is not equal to 0.  A=\begin {bmatrix} a &b \\ c &d \end {bmatrix} where a,b,c,d are number, the inverse is  A^{-1}=\begin {bmatrix} a &b \\ c &d \end {bmatrix}^{-1} = \frac{1}{ad - bc} \begin {bmatrix} d &-b \\ -c &a \end {bmatrix}

Example 1: Find the inverse of the following matrix :  B=\begin {bmatrix} 5 & -8\\ -10 &16 \end {bmatrix}

Solution :  |B|=\begin {bmatrix} 5 & -8\\ -10 &16 \end {bmatrix} = 16*5 – (-10)(-8) = 80 -80 = 0.

 B^{-1} does not exist as |B|  \neq 0.

Example 2: 

Find the inverse of matrix  A=\begin {bmatrix} 2 & -3\\ 1 &-2 \end {bmatrix}

Solution:  |A|=\begin {bmatrix} 2 & -3\\ 1 &-2 \end {bmatrix} = -4 – (-3) = -1  |A|  \neq 0  and   A^{-1}   exists.

The minor of the element are :  M_{11} = -2  C_{11} = -2,  M_{12} = 1  C_{12} = 1,  M_{21} = -3  C_{21} = +3,  M_{22} = 2  C_{22} = 2.

Cofactor matrix =  \begin {bmatrix} -2 & -1\\ 3 &2 \end {bmatrix}   and Adj A =  \begin {bmatrix} -2 & 3\\ -1 &2 \end {bmatrix}

 A^{-1} = \frac{1}{|A|} adj A   =  = \frac{1}{-1}\begin {bmatrix} -2 & 3\\ -1 &2 \end {bmatrix} =  \begin {bmatrix} 2 & -3\\ 1 & -2 \end {bmatrix} .

Exercise

  1. Find the inverse of the matrix  A=\begin {bmatrix} 1 &2 &-2 \\ -1&3&0 \\ 0&-2&1 \end {bmatrix} .
  2. Find the inverse of matrix  F=\begin {bmatrix} 4 &2 &3 \\ 4&0&1 \\ 1&1&0 \end {bmatrix} .
  3. Find the inverse of matrix A=\begin {bmatrix} 1 &-4 \\ -2&3 \end {bmatrix} .
  4. Find the inverse of matrix  D=\begin {bmatrix} 4 &-5 \\ 2&1 \end {bmatrix} .
  5. Find the inverse of the matrix  G=\begin {bmatrix} 3 &-4 &1 \\ -3&6&-1 \\ 4&-6&2 \end {bmatrix} .

 

« Transpose and Adjoint of Matrices
System of Linear Equations in Matrices »


Filed Under: Matrices

Comments

  1. Agnes says

    May 15, 2021 at 7:43 pm

    Please provide the answers to the exercises so I may know if I’m correct or not.

    Reply

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Table of Content

  • Introduction to Matrices
  • Addition Of Matrices
  • Subtraction Of Matrix
  • Multiplication of Matrices
  • Determinant of Matrices
  • Co-factor of Matrices
  • Minor of Matrices
  • Transpose and Adjoint of Matrices
  • Inverse of a Matrix
  • System of Linear Equations in Matrices

© MathsTips.com 2013 - 2025. All Rights Reserved.