MathsTips.com

Maths Help, Free Tutorials And Useful Mathematics Resources

  • Home
  • Algebra
    • Matrices
  • Geometry
  • Trigonometry
  • Calculus
  • Business Maths
  • Arithmetic
  • Statistics
Home » Algebra » Matrices » Minor of Matrices

Minor of Matrices

In a square matrix, each element possesses its own minor. The minor is defined as a value obtained from the determinant of a square matrix by deleting out a row and a column corresponding to the element of a matrix.

Given a square matrix A, by minor of an element   [a_{ij}] , we mean the value of the determinant obtained by deleting the  i^{th} row and  j^{th} column of A matrix. It is denoted by  M_{ij} . In order to find the minor of the square matrix, we have to erase out a row & a column one by one at the time & calculate their determinant, until all the minors are computed. The following are the steps to calculate minor from a matrix:

  1. Hide  i^{th} row and  j^{th} column one by one from given matrix, where i refer to m and j refers to n that is the total number of rows and columns in matrices.
  2. Evaluate the value of the determinant of the matrix made after hiding a row and a column from Step 1.

Minor of 3×3 Matrix

Consider the 3*3 matrix  A=\begin {bmatrix} a &b &c \\ d&e&f \\ g&h&i \end {bmatrix}  We had to hide the first row and column in order to find the minors of matrices.

 M_{11}=\begin {bmatrix} e&f \\ h&i \end {bmatrix} = ei – hf

 M_{12}=\begin {bmatrix} d&f \\ g&i \end {bmatrix} = di – fg

 M_{13}=\begin {bmatrix} d&e \\ g&h \end {bmatrix} = dh – eg

 M_{21}=\begin {bmatrix} b&c \\ h&i \end {bmatrix} = bi – ch

 M_{22}=\begin {bmatrix} a&c \\ g&i \end {bmatrix} = ai – cg

 M_{23}=\begin {bmatrix} a&b \\ g&h \end {bmatrix} = ah – bg

 M_{31}=\begin {bmatrix} b&c \\ e&f \end {bmatrix} = bf – ce

 M_{32}=\begin {bmatrix} a&c \\ d&f \end {bmatrix} = af – cd

 M_{33}=\begin {bmatrix} a&b \\ d&e \end {bmatrix} = ae – bd

Example: Consider the 3*3 matrix  A=\begin {bmatrix} 2 &-1 & 3 \\ 0&4&2 \\ 1 & -1& -2 \end {bmatrix}

Solution: We first calculate minor of element 2. Since it is (1,1) element of A, we delete first row and first column, so that determinant of remaining array is  \begin {bmatrix} 4 &2 \\ -1&-2 \end {bmatrix} = (4*-2) – (2*-1) = -8+2= -6 =  M_{11}

Since -1 is (1,2) element, we delete first row and second column. The determinant of remaining array  \begin {bmatrix} 0 &2 \\ 1&-2 \end {bmatrix} = 0*-2-(2*1) = -2 =  M_{12}

The minor of 3 is  \begin {bmatrix} 0 &4 \\ 1&-1 \end {bmatrix} = 0-4 = -4 =   M_{13}

The minor of 0 is  \begin {bmatrix} -1 &3 \\ -1&-2 \end {bmatrix} = (-1)(-2)-(3)(-1) = 2+3 = 5 =  M_{21}

The minor of 4 is  \begin {bmatrix} 2 &3 \\ 1&-2 \end {bmatrix} = (2)(-2)-(3)(1) = -4-3 = -7  M_{22}

The minor of 2 in (2,3) place in  \begin {bmatrix} 2 &-1 \\ 1&-1 \end {bmatrix} = (2)(-1) – (1)(1) = -2+1 = -1 =   M_{23}

The minor of 1 is  \begin {bmatrix} -1&3 \\ 4&2 \end {bmatrix} = (-1)(2) – (3)(4) = -2-12 = -14 =   M_{31}

The minor of (-1) is  \begin {bmatrix} 2&3 \\ 0&2 \end {bmatrix} = (4)-0 = 4 =  M_{32}

The minor of (-2) is  \begin {bmatrix} 2&-1 \\ 0&4 \end {bmatrix} = (2)(4)-0 = 8  =   M_{33}

Minor of 2×2 Matrix

For a 2*2 matrix, calculation of minors is very simple. Let us consider a 2 x 2 matrix  A=\begin {bmatrix} a&b \\ c&d \end {bmatrix} . We had to hide the first row and column to find the minors of matrices.

 M_{11}=\begin {bmatrix} -&- \\ -&d \end {bmatrix} = d

 M_{12}=\begin {bmatrix} -&- \\ c&- \end {bmatrix} = c

 M_{21}=\begin {bmatrix} -&b \\ -&- \end {bmatrix} = b

 M_{22}=\begin {bmatrix} a&- \\ -&- \end {bmatrix} = a

Example: Consider the matrix  P=\begin {bmatrix} 2 &6 \\ -4&7 \end {bmatrix} . For finding minor of 2 we delete first row and first column.

Solution:  \begin {bmatrix} -2 &6 \\ -4&7 \end {bmatrix} . So that remaining array is |7| = 7 =   M_{11}

Similarly, minors of 6, -4 and 7 will be -4,6,2 respectively.

Exercise

  1. Find the minor of the matrix  A=\begin {bmatrix} -1 &-2 &-2 \\ 2&1&-2 \\ 2&-2&1 \end {bmatrix} .
  2. Find the minor of matrix  F=\begin {bmatrix} 4 &2 &3 \\ 4&0&1 \\ 1&1&0 \end {bmatrix} .
  3. Find the minor of matrix A=\begin {bmatrix} 8 &-9 \\ -5&6 \end {bmatrix} .
  4. Find the minor of matrix  D=\begin {bmatrix} 4 &-5 \\ 2&1 \end {bmatrix} .
  5. Find the minor of the matrix  G=\begin {bmatrix} 3 &-4 &1 \\ -3&6&-1 \\ 4&-6&2 \end {bmatrix} .
« Co-factor of Matrices
Transpose and Adjoint of Matrices »


Filed Under: Matrices

Comments

  1. Anurag says

    November 23, 2018 at 8:44 am

    Error in “Minor of 3*3 Matrix” Example M11. Should be “ei-hf” not “ef-hi”

    Reply
    • Maths Tutor says

      July 1, 2019 at 1:11 am

      Fixed.

      Reply
    • Andre says

      September 17, 2019 at 9:43 pm

      How is it a mistake?

      Reply
  2. sean says

    June 25, 2019 at 10:22 pm

    second the first comment, major error that could negatively affect students’ understanding of minors. please change or delete this page to prevent further damage.

    Reply

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Table of Content

  • Introduction to Matrices
  • Addition Of Matrices
  • Subtraction Of Matrix
  • Multiplication of Matrices
  • Determinant of Matrices
  • Co-factor of Matrices
  • Minor of Matrices
  • Transpose and Adjoint of Matrices
  • Inverse of a Matrix
  • System of Linear Equations in Matrices

© MathsTips.com 2013 - 2023. All Rights Reserved.