MathsTips.com

Maths Help, Free Tutorials And Useful Mathematics Resources

  • Home
  • Algebra
    • Matrices
  • Geometry
  • Trigonometry
  • Calculus
  • Business Maths
  • Arithmetic
  • Statistics
Home » QnA » The slope of the tangent to a curve C: y = y(x) at any point (x, y)

The slope of the tangent to a curve C: y = y(x) at any point (x, y)

The slope of the tangent to a curve C: y = y(x) at any point (x, y) on it is \frac{{2{e^{2x}} - 6{e^{ - x}} + 9}}{{2 + 9{e^{ - 2x}}}}. If C passes through the points\left( {0,\frac{1}{2} + \frac{\pi }{{2\sqrt 2 }}} \right) and \left( {\alpha ,\frac{1}{2}{e^{2\alpha }}} \right)

Then {e^\alpha } is equal to

  1. \frac{{3 + \sqrt 2 }}{{3 - \sqrt 2 }}
  2. \frac{3}{{\sqrt 2 }}\left( {\frac{{3 + \sqrt 2 }}{{3 - \sqrt 2 }}} \right)
  3. \frac{1}{{\sqrt 2 }}\left( {\frac{{\sqrt 2 + 1}}{{\sqrt 2 - 1}}} \right)
  4. \frac{{\sqrt 2 + 1}}{{\sqrt 2 - 1}}

Solution:

Tip for solving this question:

Use the formula of the slope of the tangent.

On integration, find the value of y.

Then using points find {e^\alpha }

Step 1 of 3:

As we know, slope of tangent = \frac{{dy}}{{dx}}

Given, Slope of tangent = \frac{{2{e^{2x}} - 6{e^{ - x}} + 9}}{{2 + 9{e^{ - 2x}}}}

\therefore \frac{{dy}}{{dx}} = \frac{{2{e^{2x}} - 6{e^{ - x}} + 9}}{{2 + 9{e^{ - 2x}}}}

dy = {e^{2x}} - \frac{{6{e^{ - x}}}}{{2 + 9{e^{ - 2x}}}}dx ……….(1)

Step 2 of 3:

Now, integrate equation (1)

\int {dy = \int {{e^{2x}} - \frac{{6{e^{ - x}}}}{{2 + 9{e^{ - 2x}}}}dx} }

$latex\int {dy = \int {{e^{2x}} – \frac{{6{e^{ – x}}}}{{2 + 9{e^{ – 2x}}}}dx} } $

\Rightarrow y = \int {{e^{2x}}dx} - \int {\frac{{6{e^{ - x}}}}{{2 + 9{e^{ - 2x}}}}dx}

\Rightarrow y = \frac{{{e^{2x}}}}{2} - 3\int {\frac{{{e^{ - x}}}}{{1 + {{\left( {\frac{{3{e^{ - x}}}}{{\sqrt 2 }}} \right)}^2}}}dx} .

\begin{gathered} {e^{ - x}} = t \hfill \\ \Rightarrow - {e^{ - x}}dx = dt \hfill \\ \end{gathered}

\Rightarrow y = \frac{{{e^{2x}}}}{2} - 3\int {\frac{{ - dt}}{{1 + {{\left( {\frac{{3t}}{{\sqrt 2 }}} \right)}^2}}}}

\Rightarrow y = \frac{{{e^{2x}}}}{2} - \sqrt 2 {\tan ^{ - 1}}\frac{{3t}}{{\sqrt 2 }} + c

\Rightarrow y = \frac{{{e^{2x}}}}{2} - \sqrt 2 {\tan ^{ - 1}}\frac{{3{e^{ - x}}}}{{\sqrt 2 }} + c

Step 3 of 3:

If \left( {0,\frac{1}{2} + \frac{\pi }{{2\sqrt 2 }}} \right)satisfies the curve then, we get

\begin{gathered} \Rightarrow \frac{1}{2} + \frac{\pi }{{2\sqrt 2 }} = \frac{1}{2} + \sqrt 2 {\tan ^{ - 1}}\left( {\frac{3}{{\sqrt 2 }}} \right) + c \hfill \\ \Rightarrow c = \frac{\pi }{{2\sqrt 2 }} - \sqrt 2 {\tan ^{ - 1}}\left( {\frac{3}{{\sqrt 2 }}} \right) \hfill \\ \end{gathered}

Also, If \left( {\alpha ,\frac{1}{2}{e^{2\alpha }}} \right) satisfies the curve then, we get
\begin{gathered} \Rightarrow \frac{1}{2}{e^{2\alpha }} = \frac{{{e^{2\alpha }}}}{2} + \sqrt 2 {\tan ^{ - 1}}\left( {\frac{{3{e^{ - \alpha }}}}{{\sqrt 2 }}} \right) + c \hfill \\  \Rightarrow \frac{1}{2}{e^{2\alpha }} = \frac{{{e^{2\alpha }}}}{2} + \sqrt 2 {\tan ^{ - 1}}\left( {\frac{{3{e^{ - \alpha }}}}{{\sqrt 2 }}} \right) + \frac{\pi }{{2\sqrt 2 }} - \sqrt 2 {\tan ^{ - 1}}\left( {\frac{3}{{\sqrt 2 }}} \right) \hfill \\ \Rightarrow {\tan ^{ - 1}}\left( {\frac{3}{{\sqrt 2 }}} \right) - {\tan ^{ - 1}}\left( {\frac{{3{e^{ - \alpha }}}}{{\sqrt 2 }}} \right) = \frac{\pi }{{2\sqrt 2 }} \times \frac{1}{{\sqrt 2 }} \hfill \\ \end{gathered}

\Rightarrow {\tan ^{ - 1}}\left( {\frac{{\frac{3}{{\sqrt 2 }} - \frac{{3{e^{ - \alpha }}}}{{\sqrt 2 }}}}{{1 + \frac{9}{2}{e^{ - \alpha }}}}} \right) = \frac{\pi }{4}\left\{ {\because {{\tan }^{ - 1}}(a - b) = {{\tan }^{ - 1}}\left( {\frac{{a - b}}{{1 + ab}}} \right)} \right\}

\begin{gathered} \Rightarrow \frac{{\frac{3}{{\sqrt 2 }} - \frac{{3{e^{ - \alpha }}}}{{\sqrt 2 }}}}{{1 + \frac{9}{2}{e^{ - \alpha }}}} = 1 \hfill \\ \Rightarrow \frac{3}{{\sqrt 2 }} - \frac{{3{e^{ - \alpha }}}}{{\sqrt 2 }} = 1 + \frac{9}{2}{e^{ - \alpha }} \hfill \\ \Rightarrow \frac{3}{{\sqrt 2 }}{e^\alpha } - \frac{3}{{\sqrt 2 }} = {e^\alpha } + \frac{9}{2} \hfill \\ \Rightarrow {e^\alpha } = \frac{{\frac{9}{2} + \frac{3}{{\sqrt 2 }}}}{{\frac{3}{{\sqrt 2 }} - 1}} \hfill \\ \Rightarrow {e^\alpha } = \frac{3}{{\sqrt 2 }}\left( {\frac{{3 + \sqrt 2 }}{{3 - \sqrt 2 }}} \right) \hfill \\  \end{gathered}

Final Answer:

Hence, Option (B) is correct.

« Mean and Variance of a binomial distribution are 24 and 128


Filed Under: QnA Tagged With: JEE Main 2022, July 25th Shift 1

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Table of Content

  • For theta Belonging to 0, 4Pi the linear equations with no solutions
  • The total number of functions, f: {1, 2, 3, 4} → {1, 2, 3, 4, 5, 6} such that f(1) + f(2) = f(3), is equal to
  • α^2021 + β^2021 + γ^2021 + δ^2021 for x^4 + x^3 + x^2 + x + 1 = 0
  • Number of elements where n belongs to N and Sn Intersection Tn is phi
  • Lim n →∞, sqrt(n2-n-1)+nα+β=0 then 8(α+β)
  • Absolute maximum value of the function (x^2 – 2x + 7)e^(4x^3 – 12x^2 – 180x + 31)
  • General Solution of differential equation (x – y^2)dx +y(5x + y^2)dy
  • Line with slope greater than 1 passes A(4, 3) and intersects x–y=2 at B
  • Mean and Variance of a binomial distribution are 24 and 128
  • The slope of the tangent to a curve C: y = y(x) at any point (x, y)

© MathsTips.com 2013 - 2023. All Rights Reserved.